Displaying results 1 - 5 of 5 (Go to Advanced Search)
Project
Description: The analysis of narratives often accompanies comprehensive language assessments of students. While analyzing narratives can be time-consuming and labor-intensive, recent advances in large language models (LLMs) indicate that it may be possible to automate this process.
Project
Description: The primary purpose of the current study was to: (a) observe school-based reading interventions that aim to improve reading outcomes of upper elementary grade students with word reading difficulties or dyslexia, and (b) gain insight into feasibility and acceptability of reading interventions as reported by teachers responsible for intervention i
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The test data set was drawn randomly from the larger corpus of narrative language samples.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The training data set was drawn randomly from the larger corpus of narrative language samples.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The tworaters data set was drawn randomly from the larger corpus of narrative language samples. These samples were scored by two raters for reliability purposes.