Displaying results 1 - 8 of 8 (Go to Advanced Search)
Project
Description: The analysis of narratives often accompanies comprehensive language assessments of students. While analyzing narratives can be time-consuming and labor-intensive, recent advances in large language models (LLMs) indicate that it may be possible to automate this process.
Project
Description: We will build out the comprehensive infrastructure (data integration, research products, training, and policy relevant recommendations) which is required to support informed and open-source use of the new US Report And Placement Integrated Data System (RAPIDS).
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The test data set was drawn randomly from the larger corpus of narrative language samples.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The training data set was drawn randomly from the larger corpus of narrative language samples.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The tworaters data set was drawn randomly from the larger corpus of narrative language samples. These samples were scored by two raters for reliability purposes.
Dataset
Part of Project: Support networks for instructional supervisors and special education teachers
Description: These data include demographic information on the participating coaches (n = 15) and their coaching context. These data are crosssectional and include specific ego-IDs that can be used to merge with Alter and Tie datasets.
Dataset
Part of Project: Support networks for instructional supervisors and special education teachers
Description: These data contain perceived demographic data on named alters (by Ego) and perceived support provision. These data can be combined with Ego level data to make a nested set using key ID variables.
Dataset
Part of Project: Support networks for instructional supervisors and special education teachers
Description: These data are ties between alters in the network. These data are needed to visualize the complete network using ego and alter data as well.