Displaying results 1 - 8 of 8 (Go to Advanced Search)
Project
Description: The data within this project comprise a four year longitudinal study assessing various aspects of literacy including decoding, fluency, vocabulary, reading comprehension, listening comprehension, working memory and writing. Participants were tested on all measures once a year, approximately one year apart.
Project
Description: Project Goals:
The first goal will fill a CUREs gap by creating self-supporting and sustainable protein-centric
CUREs. The second goal will use this protein-centric CUREs community to examine two critical
aspects of a CURE: 1) the impact of the length of CUREs (course long CUREs (cCUREs) or shorter, modular
Project
Description: The analysis of narratives often accompanies comprehensive language assessments of students. While analyzing narratives can be time-consuming and labor-intensive, recent advances in large language models (LLMs) indicate that it may be possible to automate this process.
Dataset
Part of Project: Longitudinal Study on Reading and Writing at the Word, Sentence, and Text Levels
Description: This dataset is longitudinal in nature, comprising data from school years (2007/2008-2010/2011) following students in grade 1 to grade 4. Measures were chosen to provide a wide array of both reading and writing measures, encompassing reading and writing skills at the word, sentence, and larger passage or text levels.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The test data set was drawn randomly from the larger corpus of narrative language samples.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The training data set was drawn randomly from the larger corpus of narrative language samples.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The tworaters data set was drawn randomly from the larger corpus of narrative language samples. These samples were scored by two raters for reliability purposes.
Document
Part of Project: Longitudinal Study on Reading and Writing at the Word, Sentence, and Text Levels
Description: This document provides information regarding the naming of variables within the dataset, as well as information regarding the specific tests and subtests included in said dataset.
Document Type: Codebook