Displaying results 1 - 8 of 8 (Go to Advanced Search)
Project
Description: Mathematical thinking is in high demand in the global market, but approximately six percent of school-age children across the globe experience math difficulties (Shalev, et al., 2000).
Dataset
Part of Project: The Home Math Environment and Children's Math Achievment: A Meta-Analysis
Description: The data are in long form, with some studies having multiple lines and includes a sample of children ranging from 3.54 to 13.75 years old. The main effect size is the r, correlation coefficient, and the accompanying sample size is also included.
Dataset
Part of Project: Improving the Academic Performance of First-Grade Students with Reading and Math Difficulty
Description: This data set includes teacher identification (nesting) variable, reading and math scores, cognitive scores, and demographics .
Dataset
Part of Project: Support networks for instructional coaches and special education teachers
Description: These data include demographic information on the participating coaches (n = 15) and their coaching context. These data are crosssectional and include specific ego-IDs that can be used to merge with Alter and Tie datasets.
Dataset
Part of Project: Support networks for instructional coaches and special education teachers
Description: These data contain perceived demographic data on named alters (by Ego) and perceived support provision. These data can be combined with Ego level data to make a nested set using key ID variables.
Dataset
Part of Project: Support networks for instructional coaches and special education teachers
Description: These data are ties between alters in the network. These data are needed to visualize the complete network using ego and alter data as well.
Code
Home Math Environment and Children's Math Achievement Meta-Analysis R code using the Metafor package
Part of Project: The Home Math Environment and Children's Math Achievment: A Meta-Analysis
Description: This code was written in R version 3.5.3 using the metafor package (Viechtbauer, 2010). First the dataset is called in, then the variables are converted to the correct formats for analysis, then the escalc() function is used to calculate an overall Fisher's Z effect size, which is then converted to an R correlation coefficient.
Code Type: Analysis
Document
Part of Project: Improving the Academic Performance of First-Grade Students with Reading and Math Difficulty
Description: This is the codebook accompanying the dataset Comorbid Word Reading and Math Computation Difficulty at Start of First Grade.
Document Type: Codebook