Displaying results 1 - 8 of 8 (Go to Advanced Search)
Project
Description: The analysis of narratives often accompanies comprehensive language assessments of students. While analyzing narratives can be time-consuming and labor-intensive, recent advances in large language models (LLMs) indicate that it may be possible to automate this process.
Project
Description: The purpose of this study is to explore the relations among elementary schools’ RTI (Response to Intervention) implementation and teachers’ awareness of RTI implementation and student outcomes.
Dataset
Part of Project: Headsprout Data Analytics
Description: Data from the Headsprout data analytics project. This dataset includes student progress monitoring data (DIBELS, TOWRE, CELF), data analytics from their engagement in Headsprout, and information about their home literacy environment (UFLI Home Literacy survey.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The test data set was drawn randomly from the larger corpus of narrative language samples.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The training data set was drawn randomly from the larger corpus of narrative language samples.
Dataset
Part of Project: Automated Narrative Scoring Using Large Language Models
Description: Narrative language samples elicited using the ALPS Oral Narrative Retell and Oral Narrative Generation tasks from diverse K-3 students. The tworaters data set was drawn randomly from the larger corpus of narrative language samples. These samples were scored by two raters for reliability purposes.
Dataset
Part of Project: Project FOCUS: Exploring RTI Implementation with a Focus on Students Receiving Tier 3 and Special Education
Description: These are data from 1000 teachers and 77 administrators. Data include demographic variables on teachers, and their perceptions of RTI implementation in their school. This is a cross-sectional dataset.
Dataset
Part of Project: Project FOCUS: Exploring RTI Implementation with a Focus on Students Receiving Tier 3 and Special Education
Description: These are data from 65 school administrators.